Graded Derivations of the Algebra of Differential Forms Associated with a Connection
نویسندگان
چکیده
The central part of calculus on manifolds is usually the calculus of differential forms and the best known operators are exterior derivative, Lie derivatives, pullback and insertion operators. Differential forms are a graded commutative algebra and one may ask for the space of graded derivations of it. It was described by Frölicher and Nijenhuis in [1], who found that any such derivation is the sum of a Lie derivation Θ(K) and an insertion operator i(L) for tangent bundle valued differential forms K,L ∈ Ω(M ;TM). The Lie derivations give rise to the famous Frölicher-Nijenhuis bracket, an extension of the Lie bracket for vector fields to a graded Lie algebra structure on the space Ω(M ;TM) of vector valued differential forms. The space of graded derivations is a graded Lie algebra with the graded commutator as bracket, and this is the natural living ground for even the usual formulas of calculus of differential forms. In [8] derivations of even degree were integrated to local flows of automorphisms of the algebra of differential forms. In [6] we have investigated the space of all graded derivations of the graded Ω(M)module Ω(M ;E) of all vector bundle valued differential forms. We found that any such derivation, if a covariant derivative ∇ is fixed, may uniquely be written as Θ∇(K) + i(L) + μ(Ξ) and that this space of derivations is a very convenient setup for covariant derivatives, curvature etc. and that one can get the characteristic classes of the vector bundle in a very straightforward and simple manner. But the question arose of how all these nice formulas may be lifted to the linear frame bundle of the vector bundle. This paper gives an answer. In [7] we have shown that differential geometry of principal bundles carries over nicely to principal bundles with structure group the diffeomorphism group of a fixed manifold S, and that it may be expressed completely in terms of finite dimensional manifolds, namely as (generalized) connections on fiber bundles with standard fiber S, where the structure group is the whole diffeomorphism group. But some of the properties of connections remain true for still more general situations: in the main part of this paper a connection will be just a fiber projection onto a (not necessarily integrable) distribution or sub vector
منابع مشابه
Derivations of the Algebra of Sections of Superalgebra Bundles
In this paper we review the concepts of the superalgebra, superderivation and some properties of them. We will define algebraic and differential superderivations on a superalgebra and will prove some theorems about them, Then we consider a superalgebra bundle, that is an algebra bundle which its fibers are superalgebras and then characterize the superderivations of the algebra of sections of th...
متن کاملResults on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module
Let be a local Cohen-Macaulay ring with infinite residue field, an Cohen - Macaulay module and an ideal of Consider and , respectively, the Rees Algebra and associated graded ring of , and denote by the analytic spread of Burch’s inequality says that and equality holds if is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of as In this paper we ...
متن کاملar X iv : h ep - t h / 94 11 12 7 v 2 1 9 D ec 1 99 4 Linear Connections on Matrix Geometries
A general definition of a linear connection in noncommutative geometry has been recently proposed. Two examples are given of linear connections in noncommutative geometries which are based on matrix algebras. They both possess a unique metric connection. 1 Introduction and Motivation The extension to noncommutative algebras of the notion of a differential calculus has been given both without (C...
متن کاملDifferential operators and BV structures in noncommutative geometry
We introduce a new formalism of differential operators for a general associative algebra A. It replaces Grothendieck’s notion of differential operator on a commutative algebra in such a way that derivations of the commutative algebra are replaced by DerA, the bimodule of double derivations. Our differential operators act not on the algebra A itself but rather on F(A), a certain ‘Fock space’ ass...
متن کاملArens regularity and derivations of Hilbert modules with the certain product
Let $A$ be a $C^*$-algebra and $E$ be a left Hilbert $A$-module. In this paper we define a product on $E$ that making it into a Banach algebra and show that under the certain conditions $E$ is Arens regular. We also study the relationship between derivations of $A$ and $E$.
متن کامل